The Enzyme Database

Displaying entries 51-100 of 109.

<< Previous | Next >>    printer_iconPrintable version

EC 1.14.19.12     Relevance: 100%
Accepted name: acyl-lipid ω-(9-4) desaturase
Reaction: (1) linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = pinolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) α-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = coniferonoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: taxoleate = (5Z,9Z)-octadeca-5,9-dienoate
pinolenoate = (5Z,9Z,12Z)-octadeca-5,9,12-trienoate
coniferonate = (5Z,9Z,12Z,15Z)-octadeca-5,9,12,15-tetraenoate
Other name(s): acyl-lipid ω-13 desaturase; acyl-lipid 7-desaturase (ambiguous)
Systematic name: acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase [ω(9-4),ω(9-5) cis-dehydrogenating]
Comments: The enzyme, characterized from the green alga Chlamydomonas reinhardtii, is a front-end desaturase that introduces a cis double bond in ω9 unsaturated C18 or C20 fatty acids incorporated into lipids, at a position 4 carbon atoms from the existing ω9 bond, towards the carboxy end of the fatty acid (at the ω13 position). When acting on 20:2Δ(11,14) and 20:3Δ(11,14,17) substrates it introduces the new double bond between carbons 7 and 8. The enzyme contains a cytochrome b5 domain that acts as the direct electron donor for the active site of the desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kajikawa, M., Yamato, K.T., Kohzu, Y., Shoji, S., Matsui, K., Tanaka, Y., Sakai, Y. and Fukuzawa, H. A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by ω13 desaturation in methylotrophic yeast and tobacco. Plant Cell Physiol. 47 (2006) 64–73. [DOI] [PMID: 16267098]
[EC 1.14.19.12 created 2015]
 
 
EC 1.14.19.30     Relevance: 99.8%
Accepted name: acyl-lipid (8-3)-desaturase
Reaction: (1) an (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) an (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: (8Z,11Z,14Z)-icosa-8,11,14-trienoate = di-homo-γ-linolenate
(5Z,8Z,11Z,14Z)-icosa-8,11,14-trienoate = arachidonate
Other name(s): acyl-lipid 5-desaturase; Δ5-fatty-acid desaturase; DES5 (gene name); D5des (gene name); FADS1
Systematic name: Δ8 acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase (5,6 cis-dehydrogenating)
Comments: The enzyme, which has been characterized from multiple organisms including the moss Physcomitrella patens, the marine microalga Rebecca salina, and the filamentous fungus Mortierella alpina, introduces a cis double bond at the 5-position in 20-carbon polyunsaturated fatty acids incorporated in a glycerolipid that contain a Δ8 double bond. The enzyme contains a cytochrome b5 domain that acts as the direct electron donor to the active site of the desaturase, and does not require an external cytochrome.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Michaelson, L.V., Lazarus, C.M., Griffiths, G., Napier, J.A. and Stobart, A.K. Isolation of a Δ5-fatty acid desaturase gene from Mortierella alpina. J. Biol. Chem. 273 (1998) 19055–19059. [DOI] [PMID: 9668087]
2.  Kaewsuwan, S., Cahoon, E.B., Perroud, P.F., Wiwat, C., Panvisavas, N., Quatrano, R.S., Cove, D.J. and Bunyapraphatsara, N. Identification and functional characterization of the moss Physcomitrella patens Δ5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J. Biol. Chem. 281 (2006) 21988–21997. [DOI] [PMID: 16728405]
3.  Zhou, X.R., Robert, S.S., Petrie, J.R., Frampton, D.M., Mansour, M.P., Blackburn, S.I., Nichols, P.D., Green, A.G. and Singh, S.P. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68 (2007) 785–796. [DOI] [PMID: 17291553]
[EC 1.14.19.30 created 2015]
 
 
EC 3.1.3.76     Relevance: 99.1%
Accepted name: lipid-phosphate phosphatase
Reaction: (9S,10S)-10-hydroxy-9-(phosphooxy)octadecanoate + H2O = (9S,10S)-9,10-dihydroxyoctadecanoate + phosphate
Other name(s): hydroxy fatty acid phosphatase; dihydroxy fatty acid phosphatase; hydroxy lipid phosphatase; sEH (ambiguous); soluble epoxide hydrolase (ambiguous); (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoate phosphohydrolase
Systematic name: (9S,10S)-10-hydroxy-9-(phosphooxy)octadecanoate phosphohydrolase
Comments: Requires Mg2+ for maximal activity. The enzyme from mammals is a bifunctional enzyme: the N-terminal domain exhibits lipid-phosphate-phosphatase activity and the C-terminal domain has the activity of EC 3.3.2.10, soluble epoxide hydrolase (sEH) [1]. The best substrates for this enzyme are 10-hydroxy-9-(phosphooxy)octadecanoates, with the threo- form being a better substrate than the erythro- form [1]. The phosphatase activity is not found in plant sEH or in EC 3.3.2.9, microsomal epoxide hydrolase, from mammals [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Newman, J.W., Morisseau, C., Harris, T.R. and Hammock, B.D. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc. Natl. Acad. Sci. USA 100 (2003) 1558–1563. [DOI] [PMID: 12574510]
2.  Cronin, A., Mowbray, S., Dürk, H., Homburg, S., Fleming, I., Fisslthaler, B., Oesch, F. and Arand, M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc. Natl. Acad. Sci. USA 100 (2003) 1552–1557. [DOI] [PMID: 12574508]
3.  Morisseau, C. and Hammock, B.D. Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu. Rev. Pharmacol. Toxicol. 45 (2005) 311–333. [DOI] [PMID: 15822179]
4.  Tran, K.L., Aronov, P.A., Tanaka, H., Newman, J.W., Hammock, B.D. and Morisseau, C. Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the mammalian soluble epoxide hydrolase. Biochemistry 44 (2005) 12179–12187. [DOI] [PMID: 16142916]
5.  Newman, J.W., Morisseau, C. and Hammock, B.D. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog. Lipid Res. 44 (2005) 1–51. [DOI] [PMID: 15748653]
6.  Srivastava, P.K., Sharma, V.K., Kalonia, D.S. and Grant, D.F. Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure. Arch. Biochem. Biophys. 427 (2004) 164–169. [DOI] [PMID: 15196990]
7.  Gomez, G.A., Morisseau, C., Hammock, B.D. and Christianson, D.W. Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43 (2004) 4716–4723. [DOI] [PMID: 15096040]
[EC 3.1.3.76 created 2006]
 
 
EC 1.14.19.33     Relevance: 97.7%
Accepted name: Δ12 acyl-lipid conjugase (11E,13E-forming)
Reaction: (1) a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-eleostearoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a γ-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-parinaroyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: α-eleostearate = (9Z,11E,13E)-octadeca-9,11,13-trienoate
α-parinarate = (9Z,11E,13E,15Z)-octadeca-9,11,13,15-tetraenoate
γ-linolenic acid = (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid
linoleic acid = (9Z,12Z)-octadeca-9,12-dienoic acid
Other name(s): fatty acid Δ12-conjugase (ambiguous); FADX (gene name)
Systematic name: Δ12 acyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13E-forming)
Comments: The enzyme, characterized from the plants Impatiens balsamina, Momordica charantia (bitter gourd) and Vernicia fordii (tung tree), converts a single cis double bond at carbon 12 to two conjugated trans bonds at positions 11 and 13. The enzyme from Vernicia fordii can also act as a 12(E) desaturase when acting on the monounsaturated fatty acids oleate and palmitoleate. cf. EC 1.14.19.16, linoleoyl-lipid Δ12 conjugase (11E,13Z-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cahoon, E.B., Carlson, T.J., Ripp, K.G., Schweiger, B.J., Cook, G.A., Hall, S.E. and Kinney, A.J. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl. Acad. Sci. USA 96 (1999) 12935–12940. [DOI] [PMID: 10536026]
2.  Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol. 130 (2002) 2027–2038. [DOI] [PMID: 12481086]
[EC 1.14.19.33 created 2015]
 
 
EC 1.14.19.23     Relevance: 92.5%
Accepted name: acyl-lipid (n+3)-(Z)-desaturase (ferredoxin)
Reaction: an oleoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a linoleoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): acyl-lipid ω6-desaturase (ferredoxin); oleate desaturase (ambiguous); linoleate synthase (ambiguous); oleoyl-CoA desaturase (ambiguous); oleoylphosphatidylcholine desaturase (ambiguous); phosphatidylcholine desaturase (ambiguous); FAD6 (gene name)
Systematic name: oleoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This plastidial enzyme is able to insert a cis double bond in monounsaturated fatty acids incorporated into glycerolipids. The enzyme introduces the new bond at a position 3 carbons away from the existing double bond, towards the methyl end of the fatty acid. The native substrates are oleoyl (18:1 Δ9) and (Z)-hexadec-7-enoyl (16:1 Δ7) groups attached to either position of the glycerol backbone in glycerolipids, resulting in the introduction of the second double bond at positions 12 and 10, respectively This prompted the suggestion that this is an ω6 desaturase. However, when acting on palmitoleoyl groups(16:1 Δ9), the enzyme introduces the second double bond at position 12 (ω4), indicating it is an (n+3) desaturase [3]. cf. EC 1.14.19.34, acyl-lipid (9+3)-(E)-desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schmidt, H. and Heinz, E. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc. Natl. Acad. Sci. USA 87 (1990) 9477–9480. [DOI] [PMID: 11607123]
2.  Schmidt, H. and Heinz, E. Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol. 94 (1990) 214–220. [PMID: 16667689]
3.  Hitz, W.D., Carlson, T.J., Booth, J.R., Jr., Kinney, A.J., Stecca, K.L. and Yadav, N.S. Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol. 105 (1994) 635–641. [PMID: 8066133]
4.  Falcone, D.L., Gibson, S., Lemieux, B. and Somerville, C. Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast ω 6 desaturase activity. Plant Physiol. 106 (1994) 1453–1459. [PMID: 7846158]
5.  Schmidt, H., Dresselhaus, T., Buck, F. and Heinz, E. Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol. Biol. 26 (1994) 631–642. [PMID: 7948918]
[EC 1.14.19.23 created 2015]
 
 
EC 3.1.3.4     Relevance: 91.8%
Accepted name: phosphatidate phosphatase
Reaction: a 1,2-diacylglycerol 3-phosphate + H2O = a 1,2-diacyl-sn-glycerol + phosphate
Glossary: a 1,2-diacylglycerol 3-phosphate = a 3-sn-phosphatidate
a 1,2-diacyl-sn-glycerol = diacylglycerol = DAG
Other name(s): phosphatic acid phosphatase; acid phosphatidyl phosphatase; phosphatic acid phosphohydrolase; PAP; Lipin
Systematic name: diacylglycerol-3-phosphate phosphohydrolase
Comments: This enzyme catalyses the Mg2+-dependent dephosphorylation of a 1,2-diacylglycerol-3-phosphate, yielding a 1,2-diacyl-sn-glycerol (DAG), the substrate for de novo lipid synthesis via the Kennedy pathway and for the synthesis of triacylglycerol. In lipid signalling, the enzyme generates a pool of DAG to be used for protein kinase C activation. The mammalian enzymes are known as lipins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-77-8
References:
1.  Smith, S.W., Weiss, S.B. and Kennedy, E.P. The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem. 228 (1957) 915–922. [PMID: 13475370]
2.  Carman, G.M. and Han, G.S. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284 (2009) 2593–2597. [DOI] [PMID: 18812320]
[EC 3.1.3.4 created 1961, modified 2010]
 
 
EC 1.14.19.4     Relevance: 91.1%
Accepted name: acyl-lipid (11-3)-desaturase
Reaction: (1) an (11Z,14Z)-icosa-11,14-dienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) an (11Z,14Z,17Z)-icosa-11,14,17-trienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: di-homo-γ-linolenate = (8Z,11Z,14Z)-icosa-8,11,14-trienoate
Other name(s): acyl-lipid 8-desaturase; Δ8 fatty acid desaturase; Δ8-desaturase; Δ8-fatty-acid desaturase; efd1 (gene name); D8Des (gene name); phytosphinganine,hydrogen donor:oxygen Δ8-oxidoreductase (incorrect); SLD
Systematic name: acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase [(11-3),(11-2)-cis-dehydrogenating]
Comments: The enzyme, characterized from the protist Euglena gracilis [1] and the microalga Rebecca salina [2], introduces a cis double bond at the 8-position in 20-carbon fatty acids that are incorporated into a glycerolipid and have an existing Δ11 desaturation. The enzyme is a front-end desaturase, introducing the new double bond between the pre-existing double bond and the carboxyl-end of the fatty acid. It contains a cytochrome b5 domain that acts as the direct electron donor to the active site of the desaturase, and does not require an external cytochrome. Involved in alternative pathways for the biosynthesis of the polyunsaturated fatty acids arachidonate and icosapentaenoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wallis, J.G. and Browse, J. The Δ8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch. Biochem. Biophys. 365 (1999) 307–316. [DOI] [PMID: 10328826]
2.  Zhou, X.R., Robert, S.S., Petrie, J.R., Frampton, D.M., Mansour, M.P., Blackburn, S.I., Nichols, P.D., Green, A.G. and Singh, S.P. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68 (2007) 785–796. [DOI] [PMID: 17291553]
[EC 1.14.19.4 created 2008, modified 2015]
 
 
EC 1.14.19.35     Relevance: 89.6%
Accepted name: sn-2 acyl-lipid ω-3 desaturase (ferredoxin)
Reaction: (1) a (7Z,10Z)-hexadeca-7,10-dienoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a (7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(2) a linoleoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = an α-linolenoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Glossary: (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid] = linoleoyl-[glycerolipid]
(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl-[glycerolipid] = α-linolenoyl-[glycerolipid]
Other name(s): FAD7; FAD8
Systematic name: (7Z,10Z)-hexadeca-7,10-dienoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (13,14 cis-dehydrogenating)
Comments: This plastidial enzyme desaturates 16:2 fatty acids attached to the sn-2 position of glycerolipids to 16:3 fatty acids, and converts18:2 to 18:3 in both the sn-1 and sn-2 positions. It acts on all 16:2- or 18:2-containing chloroplast membrane lipids, including phosphatidylglycerol, monogalactosyldiacylglycerol, digalactosyldiaclyglycerol, and sulfoquinovosyldiacylglycerol. The enzyme introduces a cis double bond at a location 3 carbons away from the methyl end of the fatty acid. The distance from the carboxylic acid end of the molecule does not affect the location of the new double bond. cf. EC 1.14.19.25, acyl-lipid ω-3 desaturase (cytochrome b5) and EC 1.14.19.36, sn-1 acyl-lipid ω-3 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Iba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M., Arondel, V., Hugly, S. and Somerville, C. A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J. Biol. Chem. 268 (1993) 24099–24105. [PMID: 8226956]
2.  McConn, M., Hugly, S., Browse, J. and Somerville, C. A mutation at the fad8 locus of Arabidopsis identifies a second chloroplast ω-3 desaturase. Plant Physiol. 106 (1994) 1609–1614. [PMID: 12232435]
3.  Venegas-Caleron, M., Muro-Pastor, A.M., Garces, R. and Martinez-Force, E. Functional characterization of a plastidial ω-3 desaturase from sunflower (Helianthus annuus) in cyanobacteria. Plant Physiol. Biochem. 44 (2006) 517–525. [DOI] [PMID: 17064923]
[EC 1.14.19.35 created 2015]
 
 
EC 2.4.1.305     Relevance: 86.6%
Accepted name: UDP-Glc:α-D-GlcNAc-glucosaminyl-diphosphoundecaprenol β-1,3-glucosyltransferase
Reaction: UDP-α-D-glucose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-Glc-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WfaP; WfgD; UDP-Glc:GlcNAc-pyrophosphate-lipid β-1,3-glucosyltransferase; UDP-Glc:GlcNAc-diphosphate-lipid β-1,3-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-1,3-glucosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Escherichia coli serotype O56 and serotype O152.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brockhausen, I., Hu, B., Liu, B., Lau, K., Szarek, W.A., Wang, L. and Feng, L. Characterization of two β-1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152. J. Bacteriol. 190 (2008) 4922–4932. [DOI] [PMID: 18487334]
[EC 2.4.1.305 created 2013]
 
 
EC 3.1.1.77     Relevance: 85%
Accepted name: acyloxyacyl hydrolase
Reaction: 3-(acyloxy)acyl group of bacterial toxin + H2O = 3-hydroxyacyl group of bacterial toxin + a fatty acid
For diagram of reaction, click here
Comments: The substrate is lipid A on the reducing end of the toxic lipopolysaccharide (LPS) of Salmonella typhimurium and related organisms. It consists of diglucosamine, β-D-GlcN-(1→ 6)-D-GlcN, attached by glycosylation on O-6 of its non-reducing residue, phosphorylated on O-4 of this residue and on O-1 of its potentially reducing residue. Both residues carry 3-(acyloxy)acyl groups on N-2 and O-3. The enzyme from human leucocytes detoxifies the lipid by hydrolysing the secondary acyl groups from O-3 of the 3-hydroxyacyl groups on the disaccharide (LPS). It also possesses a wide range of phospholipase and acyltransferase activities [e.g. EC 3.1.1.4 (phospholipase A2), EC 3.1.1.5 (lysophospholipase), EC 3.1.1.32 (phospholipase A1) and EC 3.1.1.52 (phosphatidylinositol deacylase)], hydrolysing diacylglycerol and phosphatidyl compounds, but not triacylglycerols. It has a preference for saturated C12-C16 acyl groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 110277-64-0
References:
1.  Erwin, A.L. and Munford, R.S. Deacylation of structurally diverse lipopolysaccharides by human acyloxyacyl hydrolase. J. Biol. Chem. 265 (1990) 16444–16449. [PMID: 2398058]
2.  Hagen, F.S., Grant, F.J., Kuijper, J.L., Slaughter, C.A., Moomaw, C.R., Orth, K., O'Hara, P.J. and Munford, R.S. Expression and characterization of recombinant human acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides. Biochemistry 30 (1991) 8415–8423. [PMID: 1883828]
3.  Munford, R.S. and Hunter, J.P. Acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides, has phospholipase, lysophospholipase, diacylglycerollipase, and acyltransferase activities in vitro. J. Biol. Chem. 267 (1992) 10116–10121. [PMID: 1577781]
[EC 3.1.1.77 created 2001]
 
 
EC 3.5.1.108     Relevance: 82.7%
Accepted name: UDP-3-O-acyl-N-acetylglucosamine deacetylase
Reaction: a UDP-3-O-[(3R)-3-hydroxyacyl]-N-acetyl-α-D-glucosamine + H2O = a UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine + acetate
For diagram of lipid IVA biosynthesis, click here
Other name(s): LpxC protein; LpxC enzyme; LpxC deacetylase; deacetylase LpxC; UDP-3-O-acyl-GlcNAc deacetylase; UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; UDP-(3-O-acyl)-N-acetylglucosamine deacetylase; UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase; UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetylglucosamine amidohydrolase
Systematic name: UDP-3-O-[(3R)-3-hydroxyacyl]-N-acetyl-α-D-glucosamine amidohydrolase
Comments: A zinc protein. The enzyme catalyses a committed step in the biosynthesis of lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hernick, M., Gennadios, H.A., Whittington, D.A., Rusche, K.M., Christianson, D.W. and Fierke, C.A. UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acid-base catalyst pair mechanism. J. Biol. Chem. 280 (2005) 16969–16978. [DOI] [PMID: 15705580]
2.  Jackman, J.E., Raetz, C.R. and Fierke, C.A. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38 (1999) 1902–1911. [DOI] [PMID: 10026271]
3.  Hyland, S.A., Eveland, S.S. and Anderson, M.S. Cloning, expression, and purification of UDP-3-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: a metalloamidase of the lipid A biosynthesis pathway. J. Bacteriol. 179 (1997) 2029–2037. [DOI] [PMID: 9068651]
4.  Wang, W., Maniar, M., Jain, R., Jacobs, J., Trias, J. and Yuan, Z. A fluorescence-based homogeneous assay for measuring activity of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. Anal. Biochem. 290 (2001) 338–346. [DOI] [PMID: 11237337]
5.  Whittington, D.A., Rusche, K.M., Shin, H., Fierke, C.A. and Christianson, D.W. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc. Natl. Acad. Sci. USA 100 (2003) 8146–8150. [DOI] [PMID: 12819349]
6.  Mochalkin, I., Knafels, J.D. and Lightle, S. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci. 17 (2008) 450–457. [DOI] [PMID: 18287278]
[EC 3.5.1.108 created 2010, modified 2021]
 
 
EC 2.7.8.35     Relevance: 82.3%
Accepted name: UDP-N-acetylglucosamine—decaprenyl-phosphate N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + trans,octacis-decaprenyl phosphate = UMP + N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of galactofuranan biosynthesis, click here
Other name(s): GlcNAc-1-phosphate transferase; UDP-GlcNAc:undecaprenyl phosphate GlcNAc-1-phosphate transferase; WecA; WecA transferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:trans,octacis-decaprenyl-phosphate N-acetylglucosaminephosphotransferase
Comments: Isolated from Mycobacterium tuberculosis and Mycobacterium smegmatis. This enzyme catalyses the synthesis of monotrans,octacis-decaprenyl-N-acetyl-α-D-glucosaminyl diphosphate (mycobacterial lipid I), an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. cf. EC 2.7.8.33, UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jin, Y., Xin, Y., Zhang, W. and Ma, Y. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis. FEMS Microbiol. Lett. 310 (2010) 54–61. [DOI] [PMID: 20637039]
[EC 2.7.8.35 created 2012]
 
 
EC 1.14.19.25     Relevance: 82%
Accepted name: acyl-lipid ω-3 desaturase (cytochrome b5)
Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-linolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: linoleoyl-[glycerolipid] = (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid]
α-linolenoyl-[glycerolipid] = (9Z,12Z,15Z)-octadeca-9,12,15-trienoyl-[glycerolipid]
Other name(s): FAD3
Systematic name: (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (15,16 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond three carbons away from the methyl end of a fatty acid incorporated into a glycerolipid. The distance from the carboxylic acid end of the molecule does not have an effect. The plant enzyme acts on carbon 15 of linoleoyl groups incorporated into both the sn-1 and sn-2 positions of the glycerol backbone of phosphatidylcholine and other phospholipids, converting them into α-linolenoyl groups. The enzyme from the fungus Mortierella alpina acts on γ-linolenoyl and arachidonoyl groups, converting them into stearidonoyl and icosapentaenoyl groups, respectively [3]. cf. EC 1.14.19.35, sn-2 acyl-lipid ω-3 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Browse, J., McConn, M., James, D., Jr. and Miquel, M. Mutants of Arabidopsis deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J. Biol. Chem. 268 (1993) 16345–16351. [PMID: 8102138]
2.  Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C.R. Map-based cloning of a gene controlling ω-3 fatty acid desaturation in Arabidopsis. Science 258 (1992) 1353–1355. [DOI] [PMID: 1455229]
3.  Sakuradani, E., Abe, T., Iguchi, K. and Shimizu, S. A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 66 (2005) 648–654. [DOI] [PMID: 15538555]
[EC 1.14.19.25 created 2015]
 
 
EC 4.6.1.14     Relevance: 81.7%
Accepted name: glycosylphosphatidylinositol diacylglycerol-lyase
Reaction: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol = 6-(α-D-glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate + 1,2-diacyl-sn-glycerol
For diagram of glycosylphosphatidyl-myo-inositol biosynthesis, click here
Other name(s): (glycosyl)phosphatidylinositol-specific phospholipase C; GPI-PLC; GPI-specific phospholipase C; VSG-lipase; glycosyl inositol phospholipid anchor-hydrolyzing enzyme; glycosylphosphatidylinositol-phospholipase C; glycosylphosphatidylinositol-specific phospholipase C; variant-surface-glycoprotein phospholipase C; 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol diacylglycerol-lyase (1,2-cyclic-phosphate-forming)
Systematic name: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol 1,2-diacyl-sn-glycerol-lyase [6-(α-D-glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate-forming]
Comments: This enzyme is also active when O-4 of the glucosamine is substituted by carrying the oligosaccharide that can link a protein to the structure. It therefore cleaves proteins from the lipid part of the glycosylphostphatidylinositol (GPI) anchors. In some cases, the long-chain acyl group at the sn-1 position of glycerol is replaced by an alkyl or alk-1-enyl group. In other cases, the diacylglycerol is replaced by ceramide (see Lip-1.4 and Lip-1.5 for definition). The only characterized enzyme with this specificity is from Trypanosoma brucei, where the acyl groups are myristoyl, but the function of the trypanosome enzyme is unknown. Substitution on O-2 of the inositol blocks action of this enzyme. It is not identical with EC 3.1.4.50, glycosylphosphatidylinositol phospholipase D.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129070-68-4
References:
1.  Hereld, D., Krakow, J.L., Bangs, J.D., Hart, G.W. and Englund, P.T. A phospholipase C from Trypanosoma brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. J. Biol. Chem. 261 (1986) 13813–13819. [PMID: 3759991]
2.  Carnall, N., Webb, H. and Carrington, M. Mutagenesis study of the glycosylphosphatidylinositol phospholipase C of Trypanosoma brucei. Mol. Biochem. Parasitol. 90 (1997) 423–432. [DOI] [PMID: 9476790]
3.  Armah, D.A. and Mensa-Wilmot, K. Tetramerization of glycosylphosphatidylinositol-specific phospholipase C from Trypanosoma brucei. J. Biol. Chem. 275 (2000) 19334–19342. [DOI] [PMID: 10764777]
[EC 4.6.1.14 created 1989 as EC 3.1.4.47, transferred 2002 to EC 4.6.1.14]
 
 
EC 1.21.98.5     Relevance: 81.4%
Accepted name: tetraether lipid synthase
Reaction: (1) 2 a 2,3-bis-O-phytanyl-sn-glycero-phospholipid + 4 S-adenosyl-L-methionine + 2 reduced acceptor = a glycerol dibiphytanyl glycerol tetraether phospholipid + 4 L-methionine + 4 5′-deoxyadenosine + 2 acceptor
(2) a 2,3-bis-O-phytanyl-sn-glycero-phospholipid + 2 S-adenosyl-L-methionine + reduced acceptor = a macrocyclic archaeol phospholipid + 2 L-methionine + 2 5′-deoxyadenosine + acceptor
Glossary: 2,3-bis-O-phytanyl-sn-glycerol = archaeol
Other name(s): GDGT/MA synthase; GDGT/MAS; tetraether synthase; Tes; Mj0619 (locus name)
Systematic name: a 2,3-bis-O-phytanyl-sn-glycero-phospholipid:S-adenosyl-L-methionine,acceptor oxidoreductase (cyclyzing)
Comments: This archaeal enzyme catalyses a C-C bond formation during the biosynthesis of tetraether lipids. The bond is formed between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT). The enzyme does not distinguish whether the two lipids are connected in antiparallel or parallel geometry, resulting in formation of two forms of the product, which are known as caldarchaeol and isocaldarchaeol, respectively. The enzyme can also form macrocyclic archaeol phospholipids by joining the two lipid tails of a single substrate molecule. Even though the reaction shown here describes phospholipid substrates, the enzyme can also act on glycolipids or lipids that contains mixed types of polar head groups. The enzyme is a radical SAM enzyme that contains 3 [4Fe-4S] clusters and one mononuclear rubredoxin-like iron ion, each found in a separate domain. The enzyme uses the 5′-deoxyadenosyl radical to initiate the reaction, which involves the formation of an intermediate bond between the substrate carbon and a sulfur of one of the [4Fe-4S] clusters. Two radicals are needed per C-C bond formed. The source of the required additional electrons is not known.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zeng, Z., Chen, H., Yang, H., Chen, Y., Yang, W., Feng, X., Pei, H. and Welander, P.V. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. Nat. Commun. 13:1545 (2022). [DOI] [PMID: 35318330]
2.  Lloyd, C.T., Iwig, D.F., Wang, B., Cossu, M., Metcalf, W.W., Boal, A.K. and Booker, S.J. Discovery, structure, and mechanism of a tetraether lipid synthase. Nature (2022) . [DOI] [PMID: 35882349]
[EC 1.21.98.5 created 2022]
 
 
EC 2.4.1.256     Relevance: 78.7%
Accepted name: dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = dolichyl phosphate + α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG10; Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol α-1,2-glucosyltransferase (configuration-retaining)
Comments: This eukaryotic enzyme performs the final step in the synthesis of the lipid-linked oligosaccharide, attaching D-glucose in an α-1,2-linkage to the outermost D-glucose in the long branch. The lipid-linked oligosaccharide is involved in N-linked protein glycosylation of selected asparagine residues of nascent polypeptide chains in eukaryotic cells.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Burda, P. and Aebi, M. The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8 (1998) 455–462. [DOI] [PMID: 9597543]
[EC 2.4.1.256 created 2011, modified 2012]
 
 
EC 6.3.5.13     Relevance: 78.2%
Accepted name: lipid II isoglutaminyl synthase (glutamine-hydrolysing)
Reaction: ATP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol + L-glutamine + H2O = ADP + phosphate + β-D-GlcNAc-(1→4)-MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol = ADP + β-D-GlcNAc-(1→4)-MurNAc-L-Ala-γ-D-O-P-Glu-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol
(1c) β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-O-P-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol + NH3 = β-D-GlcNAc-(1→4)-MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol + phosphate
Glossary: lipid II = undecaprenyldiphospho-N-acetyl-(N-acetylglucosaminyl)muramoyl peptide; the peptide element refers to L-alanyl-D-γ-glutamyl-L-lysyl/meso-2,6-diaminopimelyl-D-alanyl-D-alanine or a modified version thereof = undecaprenyldiphospho-4-O-(N-acetyl-β-D-glucosaminyl)-3-O-peptidyl-α-N-acetylmuramate; the peptide element refers to L-alanyl-D-γ-glutamyl-L-lysyl/meso-2,6-diaminopimelyl-D-alanyl-D-alanine or a modified version thereof
Other name(s): MurT/GatD; MurT/GatD complex
Systematic name: β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-undecaprenol:L-glutamine amidoligase (ADP-forming)
Comments: The enzyme complex, found in Gram-positive bacteria, consists of two subunits. A glutaminase subunit (cf. EC 3.5.1.2, glutaminase) produces an ammonia molecule that is channeled to a ligase subunit, which adds it to the activated D-glutamate residue of lipid II, converting it to an isoglutamine residue.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Munch, D., Roemer, T., Lee, S.H., Engeser, M., Sahl, H.G. and Schneider, T. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog. 8:e1002509 (2012). [PMID: 22291598]
2.  Noldeke, E.R., Muckenfuss, L.M., Niemann, V., Muller, A., Stork, E., Zocher, G., Schneider, T. and Stehle, T. Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Sci. Rep. 8:12953 (2018). [PMID: 30154570]
3.  Morlot, C., Straume, D., Peters, K., Hegnar, O.A., Simon, N., Villard, A.M., Contreras-Martel, C., Leisico, F., Breukink, E., Gravier-Pelletier, C., Le Corre, L., Vollmer, W., Pietrancosta, N., Havarstein, L.S. and Zapun, A. Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat. Commun. 9:3180 (2018). [PMID: 30093673]
[EC 6.3.5.13 created 2019]
 
 
EC 1.14.19.36     Relevance: 77.6%
Accepted name: sn-1 acyl-lipid ω-3 desaturase (ferredoxin)
Reaction: (1) a 1-γ-linolenoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-stearidonoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(2) a 1-linoleoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-α-linolenoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Glossary: stearidonic acid = (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid
Other name(s): desB (gene name)
Systematic name: 1-γ-linolenoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (15,16 cis-dehydrogenating)
Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 15 of linoleoyl and γ-linolenoyl groups attached to the sn-1 position of glycerolipids. The enzyme is an ω desaturase, and determines the location of the double bond by counting three carbons from the methyl end of the fatty acid. It is nonspecific with respect to the polar head group of the glycerolipid. cf. EC 1.14.19.35, sn-2 acyl-lipid ω-3 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sakamoto, T., Los, D.A., Higashi, S., Wada, H., Nishida, I., Ohmori, M. and Murata, N. Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol. Biol. 26 (1994) 249–263. [PMID: 7524725]
[EC 1.14.19.36 created 2015]
 
 
EC 2.3.1.191     Relevance: 75.3%
Accepted name: UDP-3-O-(3-hydroxyacyl)glucosamine N-acyltransferase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + a UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine = a UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine + a holo-[acyl-carrier protein]
For diagram of lipid IVA biosynthesis, click here
Other name(s): lpxD (gene name); UDP-3-O-acyl-glucosamine N-acyltransferase; UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase; acyltransferase LpxD; acyl-ACP:UDP-3-O-(3-hydroxyacyl)-GlcN N-acyltransferase; firA (gene name); (3R)-3-hydroxymyristoyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxymyristoyl]-α-D-glucosamine N-acetyltransferase; UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase; (3R)-3-hydroxytetradecanoyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxytetradecanoyl]-α-D-glucosamine N-acetyltransferase
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine N-acyltransferase
Comments: The enzyme catalyses a step of lipid A biosynthesis. LpxD from Escherichia coli prefers (3R)-3-hydroxytetradecanoyl-[acyl-carrier protein] [3], but it does not have an absolute specificity for 14-carbon hydroxy fatty acids, as it can transfer other fatty acids, including odd-chain fatty acids, if they are available to the organism [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kelly, T.M., Stachula, S.A., Raetz, C.R. and Anderson, M.S. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J. Biol. Chem. 268 (1993) 19866–19874. [PMID: 8366125]
2.  Buetow, L., Smith, T.K., Dawson, A., Fyffe, S. and Hunter, W.N. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc. Natl. Acad. Sci. USA 104 (2007) 4321–4326. [DOI] [PMID: 17360522]
3.  Bartling, C.M. and Raetz, C.R. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 47 (2008) 5290–5302. [DOI] [PMID: 18422345]
4.  Bainbridge, B.W., Karimi-Naser, L., Reife, R., Blethen, F., Ernst, R.K. and Darveau, R.P. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J. Bacteriol. 190 (2008) 4549–4558. [DOI] [PMID: 18456814]
5.  Bartling, C.M. and Raetz, C.R. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 48 (2009) 8672–8683. [DOI] [PMID: 19655786]
6.  Badger, J., Chie-Leon, B., Logan, C., Sridhar, V., Sankaran, B., Zwart, P.H. and Nienaber, V. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69 (2013) 6–9. [DOI] [PMID: 23295477]
7.  Kroeck, K.G., Sacco, M.D., Smith, E.W., Zhang, X., Shoun, D., Akhtar, A., Darch, S.E., Cohen, F., Andrews, L.D., Knox, J.E. and Chen, Y. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci. Rep. 9:15450 (2019). [DOI] [PMID: 31664082]
[EC 2.3.1.191 created 2010, modified 2021]
 
 
EC 2.7.8.33     Relevance: 73.1%
Accepted name: UDP-N-acetylglucosamine—undecaprenyl-phosphate N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + ditrans,octacis-undecaprenyl phosphate = UMP + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Glossary: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = lipid I = GlcNAc-pyrophosphorylundecaprenol = ditrans,octacis-undecaprenyl-N-acetyl-α-D-glucosaminyl diphosphate
Other name(s): UDP-N-acetylglucosamine:undecaprenyl-phosphate GlcNAc-1-phosphate transferase; WecA; WecA transferase; UDP-GIcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase; GlcNAc-P-P-Und synthase; GPT (ambiguous); TagO; UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase; UDP-N-acetyl-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetylglucosaminephosphotransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetyl-α-D-glucosaminephosphotransferase
Comments: This enzyme catalyses the synthesis of N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol, an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. The enzyme also initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide in certain Escherichia coli strains, including K-12 [2] and of teichoic acid in certain Gram-positive bacteria [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Al-Dabbagh, B., Mengin-Lecreulx, D. and Bouhss, A. Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J. Bacteriol. 190 (2008) 7141–7146. [DOI] [PMID: 18723618]
2.  Lehrer, J., Vigeant, K.A., Tatar, L.D. and Valvano, M.A. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 189 (2007) 2618–2628. [DOI] [PMID: 17237164]
3.  Rush, J.S., Rick, P.D. and Waechter, C.J. Polyisoprenyl phosphate specificity of UDP-GlcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase from E.coli. Glycobiology 7 (1997) 315–322. [DOI] [PMID: 9134438]
4.  Soldo, B., Lazarevic, V. and Karamata, D. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148 (2002) 2079–2087. [DOI] [PMID: 12101296]
[EC 2.7.8.33 created 2011]
 
 
EC 2.3.2.16     Relevance: 72.5%
Accepted name: lipid II:glycine glycyltransferase
Reaction: MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenyl-GlcNAc + glycyl-tRNAGly = MurNAc-L-Ala-D-isoglutaminyl-L-Lys-(N6-Gly)-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenyl-GlcNAc + tRNAGly
Other name(s): N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine-diphosphoundecaprenyl-N-acetylglucosamine:N6-glycine transferase; femX (gene name); alanyl-D-alanine-diphospho-ditrans,octacis-undecaprenyl-N-acetylglucosamine:glycine N6-glycyltransferase
Systematic name: MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenyl-GlcNAc:glycine N6-glycyltransferase
Comments: The enzyme from Staphylococcus aureus catalyses the transfer of glycine from a charged tRNA to MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphosphoundecaprenyl-GlcNAc (lipid II), attaching it to the N6 of the L-Lys at position 3 of the pentapeptide. This is the first step in the synthesis of the pentaglycine interpeptide bridge that is used in S. aureus for the crosslinking of different glycan strands to each other. Four additional Gly residues are subsequently attached by EC 2.3.2.17 (N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-(N6-glycyl)-D-alanyl-D-alanine-diphosphoundecaprenyl-N-acetylglucosamine:glycine glycyltransferase) and EC 2.3.2.18 (N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-(N6-triglycine)-D-alanyl-D-alanine-diphosphoundecaprenyl-N-acetylglucosamine:glycine glycyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schneider, T., Senn, M.M., Berger-Bachi, B., Tossi, A., Sahl, H.G. and Wiedemann, I. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol. Microbiol. 53 (2004) 675–685. [DOI] [PMID: 15228543]
[EC 2.3.2.16 created 2010]
 
 
EC 1.11.1.9     Relevance: 67%
Accepted name: glutathione peroxidase
Reaction: 2 glutathione + H2O2 = glutathione disulfide + 2 H2O
Other name(s): GSH peroxidase; selenium-glutathione peroxidase; reduced glutathione peroxidase
Systematic name: glutathione:hydrogen-peroxide oxidoreductase
Comments: A protein containing a selenocysteine residue. Steroid and lipid hydroperoxides, but not the product of reaction of EC 1.13.11.12 lipoxygenase on phospholipids, can act as acceptor, but more slowly than H2O2 (cf. EC 1.11.1.12 phospholipid-hydroperoxide glutathione peroxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-66-5
References:
1.  Chaudiere, J. and Tappel, A.L. Purification and characterization of selenium-glutathione peroxidase from hamster liver. Arch. Biochem. Biophys. 226 (1983) 448–457. [DOI] [PMID: 6227287]
2.  Grossmann, A. and Wendel, A. Non-reactivity of the selenoenzyme glutathione peroxidase with enzymatically hydroperoxidized phospholipids. Eur. J. Biochem. 135 (1983) 549–552. [DOI] [PMID: 6413205]
3.  Nakamura, W., Hosoda, S. and Hayashi, K. Purification and properties of rat liver glutathione peroxidase. Biochim. Biophys. Acta 358 (1974) 251–261.
[EC 1.11.1.9 created 1965, modified 1989]
 
 
EC 2.1.1.17     Relevance: 66%
Accepted name: phosphatidylethanolamine N-methyltransferase
Reaction: S-adenosyl-L-methionine + phosphatidylethanolamine = S-adenosyl-L-homocysteine + phosphatidyl-N-methylethanolamine
Other name(s): PEMT; LMTase; lipid methyl transferase; phosphatidylethanolamine methyltransferase; phosphatidylethanolamine-N-methylase; phosphatidylethanolamine-S-adenosylmethionine methyltransferase
Systematic name: S-adenosyl-L-methionine:phosphatidylethanolamine N-methyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-91-0
References:
1.  Hirata, F., Viveros, O.H., Diliberto, E.J., Jr. and Axelrod, J. Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine. Proc. Natl. Acad. Sci. USA 75 (1978) 1718–1721. [DOI] [PMID: 25437]
2.  Morgan, T.E. Isolation and characterization of lipid N-methyltransferase from dog lung. Biochim. Biophys. Acta 178 (1969) 21–34. [DOI] [PMID: 5773456]
3.  Schneider, W.J. and Vance, D.E. Conversion of phosphatidylethanolamine to phosphatidylcholine in rat liver. Partial purification and characterization of the enzymatic activities. J. Biol. Chem. 254 (1979) 3886–3891. [PMID: 438165]
[EC 2.1.1.17 created 1972]
 
 
EC 1.14.19.27     Relevance: 61.5%
Accepted name: sn-2 palmitoyl-lipid 9-desaturase
Reaction: a 1-acyl-2-palmitoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-acyl-2-palmitoleoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): DesC2
Systematic name: 1-acyl-2-palmitoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (9,10 cis-dehydrogenating)
Comments: The enzyme, characterized from the cyanobacterium Nostoc sp. 36, introduces a cis double bond at carbon 9 of palmitoyl groups (16:0) attached to the sn-2 position of glycerolipids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chintalapati, S., Prakash, J.S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N. and Shivaji, S. A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem. J. 398 (2006) 207–214. [DOI] [PMID: 16689682]
[EC 1.14.19.27 created 2015]
 
 
EC 1.14.13.204      
Transferred entry: long-chain acyl-CoA ω-monooxygenase. Now EC 1.14.14.129, long-chain acyl-CoA ω-monooxygenase
[EC 1.14.13.204 created 2015, deleted 2018]
 
 
EC 2.6.1.122     Relevance: 60.3%
Accepted name: UDP-N-acetyl-3-dehydro-α-D-glucosamine 3-aminotranferase
Reaction: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose + 2-oxoglutarate = UDP-N-acetyl-3-dehydro-α-D-glucosamine + L-glutamate
Other name(s): gnnB (gene name)
Systematic name: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose:2-oxoglutarate aminotransferase
Comments: This bacterial enzyme participates, together with EC 1.1.1.374, UDP-N-acetylglucosamine 3-dehydrogenase, in the synthesis of 2,3-diamino-2,3-dideoxy-D-glucopyranose, a component of lipid A in some species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sweet, C.R., Ribeiro, A.A. and Raetz, C.R. Oxidation and transamination of the 3"-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid a molecules with four amide-linked acyl chains. J. Biol. Chem. 279 (2004) 25400–25410. [DOI] [PMID: 15044494]
[EC 2.6.1.122 created 2021]
 
 
EC 1.14.19.28     Relevance: 59.2%
Accepted name: sn-1 stearoyl-lipid 9-desaturase
Reaction: a 1-stearoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-oleoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): desC (gene name)
Systematic name: 1-stearoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (9,10 cis-dehydrogenating)
Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 9 of stearoyl groups (18:0) attached to the sn-1 position of glycerolipids. The enzyme is nonspecific with respect to the polar head group of the glycerolipid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wada, H., Schmidt, H., Heinz, E. and Murata, N. In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J. Bacteriol. 175 (1993) 544–547. [DOI] [PMID: 8419301]
2.  Higashi, S. and Murata, N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803. Plant Physiol. 102 (1993) 1275–1278. [PMID: 12231903]
3.  Sakamoto, T., Wada, H., Nishida, I., Ohmori, M. and Murata, N. Δ9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. J. Biol. Chem. 269 (1994) 25576–25580. [PMID: 7929259]
[EC 1.14.19.28 created 2015]
 
 
EC 2.7.1.174     Relevance: 58.8%
Accepted name: diacylglycerol kinase (CTP)
Reaction: CTP + 1,2-diacyl-sn-glycerol = CDP + 1,2-diacyl-sn-glycerol 3-phosphate
Glossary: 1,2-diacyl-sn-glycerol 3-phosphate = phosphatidate
Other name(s): DAG kinase; CTP-dependent diacylglycerol kinase; diglyceride kinase (ambiguous); DGK1 (gene name); diacylglycerol kinase (CTP dependent)
Systematic name: CTP:1,2-diacyl-sn-glycerol 3-phosphotransferase
Comments: Requires Ca2+ or Mg2+ for activity. Involved in synthesis of membrane phospholipids and the neutral lipid triacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals [cf. EC 2.7.1.107, diacylglycerol kinase (ATP)], the enzyme from Saccharomyces cerevisiae utilizes CTP. The enzyme can also use dCTP, but not ATP, GTP or UTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Han, G.S., O'Hara, L., Carman, G.M. and Siniossoglou, S. An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J. Biol. Chem. 283 (2008) 20433–20442. [DOI] [PMID: 18458075]
2.  Han, G.S., O'Hara, L., Siniossoglou, S. and Carman, G.M. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J. Biol. Chem. 283 (2008) 20443–20453. [DOI] [PMID: 18458076]
3.  Fakas, S., Konstantinou, C. and Carman, G.M. DGK1-encoded diacylglycerol kinase activity is required for phospholipid synthesis during growth resumption from stationary phase in Saccharomyces cerevisiae. J. Biol. Chem. 286 (2011) 1464–1474. [DOI] [PMID: 21071438]
[EC 2.7.1.174 created 2012, modified 2013]
 
 
EC 2.4.1.54     Relevance: 58.7%
Accepted name: undecaprenyl-phosphate mannosyltransferase
Reaction: GDP-α-D-mannose + undecaprenyl phosphate = GDP + D-mannosyl-1-phosphoundecaprenol
Other name(s): guanosine diphosphomannose-undecaprenyl phosphate mannosyltransferase; GDP mannose-undecaprenyl phosphate mannosyltransferase; GDP-D-mannose:lipid phosphate transmannosylase; GDP-mannose:undecaprenyl-phosphate D-mannosyltransferase
Systematic name: GDP-α-D-mannose:undecaprenyl-phosphate D-mannosyltransferase
Comments: Requires phosphatidylglycerol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-62-6
References:
1.  Lahav, M., Chiu, T.H. and Lennarz, W.J. Studies on the biosynthesis of mannan in Micrococcus lysodeikticus. II. The enzymatic synthesis of mannosyl-l-phosphoryl-undecaprenol. J. Biol. Chem. 244 (1969) 5890–5898. [PMID: 5350943]
2.  Rush, J.S. and Waechter, C.J. Partial purification of mannosylphosphorylundecaprenol synthase from Micrococcus luteus: a useful enzyme for the biosynthesis of a variety of mannosylphosphorylpolyisoprenol products. Methods Mol. Biol. 347 (2006) 13–30. [DOI] [PMID: 17072001]
[EC 2.4.1.54 created 1972]
 
 
EC 1.11.1.22     Relevance: 57.7%
Accepted name: hydroperoxy fatty acid reductase
Reaction: a hydroperoxy fatty acid + NADPH + H+ = a hydroxy fatty acid + NADP+ + H2O
Other name(s): slr1171 (gene name); slr1992 (gene name); hydroperoxy fatty acid:NADPH oxidoreductase
Systematic name: NADPH:hydroperoxy fatty acid oxidoreductase
Comments: The enzyme, characterized from the cyanobacterium Synechocystis PCC 6803, can reduce unsaturated fatty acid hydroperoxides and alkyl hydroperoxides. The enzyme, which utilizes NADPH generated by the photosynthetic electron transfer system, protects the cells from lipid peroxidation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gaber, A., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett. 499 (2001) 32–36. [DOI] [PMID: 11418106]
2.  Gaber, A., Yoshimura, K., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol. 136 (2004) 2855–2861. [DOI] [PMID: 15347790]
[EC 1.11.1.22 created 2013]
 
 
EC 2.5.1.89     Relevance: 57.3%
Accepted name: tritrans,polycis-undecaprenyl diphosphate synthase [geranylgeranyl-diphosphate specific]
Reaction: geranylgeranyl diphosphate + 7 isopentenyl diphosphate = 7 diphosphate + tritrans,heptacis-undecaprenyl diphosphate
For diagram of di- and tritrans,polycis-polyprenol biosynthesis, click here
Systematic name: geranylgeranyl-diphosphate:isopentenyl-diphosphate cistransferase (adding 7 isopentenyl units)
Comments: This enzyme is involved in the biosynthesis of the glycosyl carrier lipid in some archaebacteria. Unlike EC 2.5.1.31, its counterpart in most bacteria, it prefers geranylgeranyl diphosphate to farnesyl diphosphate as the allylic substrate, resulting in production of a tritrans,polycis variant of undecaprenyl diphosphate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hemmi, H., Yamashita, S., Shimoyama, T., Nakayama, T. and Nishino, T. Cloning, expression, and characterization of cis-polyprenyl diphosphate synthase from the thermoacidophilic archaeon Sulfolobus acidocaldarius. J. Bacteriol. 183 (2001) 401–404. [DOI] [PMID: 11114943]
[EC 2.5.1.89 created 2010, modified 2011]
 
 
EC 2.4.1.232     Relevance: 57.3%
Accepted name: initiation-specific α-1,6-mannosyltransferase
Reaction: Transfers an α-D-mannosyl residue from GDP-mannose into lipid-linked oligosaccharide, forming an α-(1→6)-D-mannosyl-D-mannose linkage
Other name(s): α-1,6-mannosyltransferase; GDP-mannose:oligosaccharide 1,6-α-D-mannosyltransferase; GDP-mannose:glycolipid 1,6-α-D-mannosyltransferase; glycolipid 6-α-mannosyltransferase; GDP-mannose:oligosaccharide 1,6-α-D-mannosyltransferase
Systematic name: GDP-mannose:oligosaccharide 6-α-D-mannosyltransferase
Comments: Requires Mn2+. In Saccharomyces cerevisiae, this enzyme catalyses an essential step in the outer chain elongation of N-linked oligosaccharides. Man8GlcNAc and Man9GlcNAc are equally good substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 346003-17-6
References:
1.  Romero, P.A. and Herscovics, A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Characterization of α-1,6-mannosyltransferase which initiates outer chain formation. J. Biol. Chem. 264 (1989) 1946–1950. [PMID: 2644248]
2.  Reason, A.J., Dell, A., Romero, P.A. and Herscovics, A. Specificity of the mannosyltransferase which initiates outer chain formation in Saccharomyces cerevisiae. Glycobiology 1 (1991) 387–391. [DOI] [PMID: 1820199]
3.  Nakanishi-Shindo, Y., Nakayama, K., Tanaka, A., Toda, Y. and Jigami, Y. Structure of the N-linked oligosaccharides that show the complete loss of α-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 268 (1993) 26338–26345. [PMID: 8253757]
4.  Yamamoto, K., Okamoto, M., Yoko-o, T. and Jigami, Y. Salt stress induces the expression of the Schizosaccharomyces pombe och1+, which encodes an initiation-specific α-1,6-mannosyltransferase for N-linked outer chain synthesis of cell wall mannoproteins. Biosci. Biotechnol. Biochem. 67 (2003) 927–929. [DOI] [PMID: 12784644]
5.  Cui, Z., Horecka, J. and Jigami, Y. Cdc4 is involved in the transcriptional control of OCH1, a gene encoding α-1,6-mannosyltransferase in Saccharomyces cerevisiae. Yeast 19 (2002) 69–77. [DOI] [PMID: 11754484]
6.  Tsukahara, K., Watanabe, T., Yoko-o, T. and Chigami, Y. Schizosaccharomyces pombe och1+ gene encoding α-1,6-mannosyltransferase and use of och1+ gene knockout fission yeast for production of glycoproteins with reduced glycosylation. Jpn. Kokai Tokkyo Koho Koho (2001) 11.
7.  Nakayama, K., Nakanishi-Shindo, Y., Tanaka, A., Haga-Toda, Y. and Jigami, Y. Substrate specificity of α-1,6-mannosyltransferase that initiates N-linked mannose outer chain elongation in Saccharomyces cerevisiae. FEBS Lett. 412 (1997) 547–550. [DOI] [PMID: 9276464]
8.  Suzuki, A., Shibata, N., Suzuki, M., Saitoh, F., Takata, Y., Oshie, A., Oyamada, H., Kobayashi, H., Suzuki, S. and Okawa, Y. Characterization of α-1,6-mannosyltransferase responsible for the synthesis of branched side chains in Candida albicans mannan. Eur. J. Biochem. 240 (1996) 37–44. [DOI] [PMID: 8797833]
9.  Yip, C.L., Welch, S.K., Klebl, F., Gilbert, T., Seidel, P., Grant, F., O'Hara, P.J. and MacKay, V.L. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc. Natl. Acad. Sci. USA 91 (1994) 2723–2727. [DOI] [PMID: 8146181]
[EC 2.4.1.232 created 2004]
 
 
EC 3.1.4.50     Relevance: 57.2%
Accepted name: glycosylphosphatidylinositol phospholipase D
Reaction: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O = 6-(α-D-glucosaminyl)-1D-myo-inositol + 3-sn-phosphatidate
For diagram of glycosylphosphatidyl-myo-inositol biosynthesis, click here
Other name(s): GPI-PLD; glycoprotein phospholipase D; phosphatidylinositol phospholipase D; phosphatidylinositol-specific phospholipase D
Systematic name: glycoprotein-phosphatidylinositol phosphatidohydrolase
Comments: This enzyme is also active when O-4 of the glucosamine is substituted by carrying the oligosaccharide that can link a protein to the structure. It therefore cleaves proteins from the lipid part of the glycosylphosphatidylinositol (GPI) anchors, but does so by hydrolysis, whereas glycosylphosphatidylinositol diacylglycerol-lyase (EC 4.6.1.14) does so by elimination. It acts on plasma membranes only after solubilization of the substrate with detergents or solvents, but it may act on intracellular membranes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 113756-14-2
References:
1.  Low, M.G. and Prasad, A.R.S. A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc. Natl. Acad. Sci. USA 85 (1988) 980–984. [DOI] [PMID: 3422494]
2.  Malik, A.-S. and Low, M.G. Conversion of human placental alkaline phosphatase from a high Mr form to a low Mr form during butanol extraction. An investigation of the role of endogenous phosphoinositide-specific phospholipases. Biochem. J. 240 (1986) 519–527. [PMID: 3028377]
3.  Li, J.Y., Hollfelder, K., Huang, K.S. and Low, M.G. Structural features of GPI-specific phospholipase D revealed by fragmentation and Ca2+ binding studies. J. Biol. Chem. 269 (1994) 28963–28971. [PMID: 7961859]
4.  Deeg, M.A, Vierman, E.L. and Cheung, M.C. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J. Lipid Res. 42 (2001) 442–451. [PMID: 11254757]
[EC 3.1.4.50 created 1990, modified 2002]
 
 
EC 1.14.19.46     Relevance: 54.6%
Accepted name: sn-1 linoleoyl-lipid 6-desaturase
Reaction: a 1-linoleoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-γ-linolenoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): desD (gene name)
Systematic name: 1-linoleoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (6,7-cis-dehydrogenating)
Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 6 of linoleoyl groups (18:2) attached to the sn-1 position of glycerolipids. The enzyme is a front-end desaturase, introducing the new double bond between a pre-existing double bond and the carboxyl-end of the fatty acid. It is nonspecific with respect to the polar head group of the glycerolipid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Higashi, S. and Murata, N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803. Plant Physiol. 102 (1993) 1275–1278. [PMID: 12231903]
2.  Reddy, A.S. and Thomas, T.L. Expression of a cyanobacterial Δ6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nat. Biotechnol. 14 (1996) 639–642. [DOI] [PMID: 9630958]
3.  Kurdrid, P., Subudhi, S., Hongsthong, A., Ruengjitchatchawalya, M. and Tanticharoen, M. Functional expression of Spirulina6 desaturase gene in yeast, Saccharomyces cerevisiae. Mol. Biol. Rep. 32 (2005) 215–226. [DOI] [PMID: 16328883]
[EC 1.14.19.46 created 2015]
 
 
EC 1.14.14.129     Relevance: 54.5%
Accepted name: long-chain acyl-CoA ω-monooxygenase
Reaction: (1) oleoyl-CoA + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxyoleoyl-CoA + [oxidized NADPH—hemoprotein reductase] + H2O
(2) linoleoyl-CoA + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxylinoleoyl-CoA + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): long-chain acyl-CoA ω-hydroxylase; CYP86A22 (gene name)
Systematic name: long-chain acyl-CoA,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzymes from solanaceous plants are involved in the biosynthesis of stigmatic estolide, a lipid-based polyester that forms a major component of the exudate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Han, J., Clement, J.M., Li, J., King, A., Ng, S. and Jaworski, J.G. The cytochrome P450 CYP86A22 is a fatty acyl-CoA ω-hydroxylase essential for estolide synthesis in the stigma of Petunia hybrida. J. Biol. Chem. 285 (2010) 3986–3996. [DOI] [PMID: 19940120]
[EC 1.14.14.129 created 2015 as EC 1.14.13.204, transferred 2018 to EC 1.14.14.129]
 
 
EC 1.14.19.45     Relevance: 54.1%
Accepted name: sn-1 oleoyl-lipid 12-desaturase
Reaction: a 1-oleoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-linoleoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
Other name(s): desA (gene name)
Systematic name: 1-oleoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (12,13-cis-dehydrogenating)
Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 12 of oleoyl groups (18:1) attached to the sn-1 position of glycerolipids. The enzyme is a methyl-end desaturase, introducing the new double bond between a pre-existing double bond and the methyl-end of the fatty acid. It is nonspecific with respect to the polar head group of the glycerolipid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wada, H., Gombos, Z. and Murata, N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347 (1990) 200–203. [DOI] [PMID: 2118597]
2.  Higashi, S. and Murata, N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803. Plant Physiol. 102 (1993) 1275–1278. [PMID: 12231903]
3.  Amiri, R.M., Yur'eva, N.O., Shimshilashvili, K.R., Goldenkova-Pavlova, I.V., Pchelkin, V.P., Kuznitsova, E.I., Tsydendambaev, V.D., Trunova, T.I., Los, D.A., Jouzani, G.S. and Nosov, A.M. Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. J. Integr. Plant Biol. 52 (2010) 289–297. [DOI] [PMID: 20377689]
[EC 1.14.19.45 created 2015]
 
 
EC 2.4.1.304     Relevance: 53.9%
Accepted name: UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol β-1,4-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-Gal-(1→4)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WfeD; UDP-Gal:GlcNAc-R 1,4-Gal-transferase; UDP-Gal:GlcNAc-pyrophosphate-lipid β-1,4-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-1,4-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Shigella boydii B14. The activity is stimulated by Mn2+ or to a lesser extent by Mg2+, Ca2+, Ni2+ or Pb2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xu, C., Liu, B., Hu, B., Han, Y., Feng, L., Allingham, J.S., Szarek, W.A., Wang, L. and Brockhausen, I. Biochemical characterization of UDP-Gal:GlcNAc-pyrophosphate-lipid β-1,4-Galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating-unit synthesis. J. Bacteriol. 193 (2011) 449–459. [DOI] [PMID: 21057010]
[EC 2.4.1.304 created 2013]
 
 
EC 1.14.19.75     Relevance: 53.6%
Accepted name: very-long-chain acyl-lipid ω-9 desaturase
Reaction: (1) 1-hexacosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(17Z)-hexacos-17-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) 1-tetracosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(15Z)-tetracos-15-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
Other name(s): ADS2 (gene name)
Systematic name: very-long-chain acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (ω98-cis-dehydrogenating)
Comments: The enzyme, characterized from the plant Arabidopsis thaliana, acts on both 24:0 and 26:0 fatty acids, introducing a cis double bond at a position 9 carbons from the methyl end. These very-long-chain fatty acids are found as a minor component of seed lipids, but also in the membrane phosphatidylethanolamine and phosphatidylserine, in sphingolipids, as precursors and components of cuticular and epicuticular waxes, and in suberin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fukuchi-Mizutani, M., Tasaka, Y., Tanaka, Y., Ashikari, T., Kusumi, T. and Murata, N. Characterization of δA9 acyl-lipid desaturase homologues from Arabidopsis thaliana. Plant Cell Physiol. 39 (1998) 247–253. [PMID: 9559566]
2.  Smith, M.A., Dauk, M., Ramadan, H., Yang, H., Seamons, L.E., Haslam, R.P., Beaudoin, F., Ramirez-Erosa, I. and Forseille, L. Involvement of Arabidopsis acyl-coenzyme A desaturase-like2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol. 161 (2013) 81–96. [PMID: 23175755]
[EC 1.14.19.75 created 2018]
 
 
EC 2.7.1.107     Relevance: 53.4%
Accepted name: diacylglycerol kinase (ATP)
Reaction: ATP + 1,2-diacyl-sn-glycerol = ADP + 1,2-diacyl-sn-glycerol 3-phosphate
Glossary: 1,2-diacyl-sn-glycerol 3-phosphate = phosphatidate
Other name(s): diglyceride kinase (ambiguous); 1,2-diacylglycerol kinase (phosphorylating) (ambiguous); 1,2-diacylglycerol kinase (ambiguous); sn-1,2-diacylglycerol kinase (ambiguous); DG kinase (ambiguous); DGK (ambiguous); ATP:diacylglycerol phosphotransferase; arachidonoyl-specific diacylglycerol kinase; diacylglycerol:ATP kinase; ATP:1,2-diacylglycerol 3-phosphotransferase; diacylglycerol kinase (ATP dependent)
Systematic name: ATP:1,2-diacyl-sn-glycerol 3-phosphotransferase
Comments: Involved in synthesis of membrane phospholipids and the neutral lipid triacylglycerol. Activity is stimulated by certain phospholipids [4,7]. In plants and animals the product 1,2-diacyl-sn-glycerol 3-phosphate is an important second messenger. cf. EC 2.7.1.174, diacylglycerol kinase (CTP).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60382-71-0
References:
1.  Hokin, L.E. and Hokin, M.R. Diglyceride kinase and other pathways for phosphatidic acid synthesis in the erythrocyte membrane. Biochim. Biophys. Acta 67 (1963) 470–484. [PMID: 13961253]
2.  Weissbach, H., Thomas, E. and Kaback, H.R. Studies on the metabolism of ATP by isolated bacterial membranes: formation and metabolism of membrane-bound phosphatidic acid. Arch. Biochem. Biophys. 147 (1971) 249–254. [DOI] [PMID: 4940043]
3.  Daleo, G.R., Piras, M.M. and Piras, R. Diglyceride kinase activity of microtubules. Characterization and comparison with the protein kinase and ATPase activities associated with vinblastine-isolated tubulin of chick embryonic muscles. Eur. J. Biochem. 68 (1976) 339–346. [DOI] [PMID: 185051]
4.  Walsh, J.P. and Bell, R.M. sn-1,2-Diacylglycerol kinase of Escherichia coli. Structural and kinetic analysis of the lipid cofactor dependence. J. Biol. Chem. 261 (1986) 15062–15069. [PMID: 3021764]
5.  Russ, E., Kaiser, U. and Sandermann, H., Jr. Lipid-dependent membrane enzymes. Purification to homogeneity and further characterization of diacylglycerol kinase from Escherichia coli. Eur. J. Biochem. 171 (1988) 335–342. [PMID: 2828054]
6.  Walsh, J.P. and Bell, R.M. Diacylglycerol kinase from Escherichia coli. Methods Enzymol. 209 (1992) 153–162. [DOI] [PMID: 1323028]
7.  Wissing, J.B. and Wagner, K.G. Diacylglycerol kinase from suspension cultured plant cells : characterization and subcellular localization. Plant Physiol. 98 (1992) 1148–1153. [PMID: 16668739]
[EC 2.7.1.107 created 1984, modified 2013]
 
 
EC 2.4.1.157      
Transferred entry: 1,2-diacylglycerol 3-glucosyltransferase. Now classified as EC 2.4.1.336, monoglucosyldiacylglycerol synthase, and EC 2.4.1.337, 1,2-diacylglycerol 3-α-glucosyltransferase
[EC 2.4.1.157 created 1986, deleted 2015]
 
 
EC 2.4.1.337     Relevance: 52.2%
Accepted name: 1,2-diacylglycerol 3-α-glucosyltransferase
Reaction: UDP-α-D-glucose + a 1,2-diacyl-sn-glycerol = UDP + a 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol
Other name(s): mgs (gene name); UDP-glucose:diacylglycerol glucosyltransferase; UDP-glucose:1,2-diacylglycerol glucosyltransferase; uridine diphosphoglucose-diacylglycerol glucosyltransferase; UDP-glucose-diacylglycerol glucosyltransferase; UDP-glucose:1,2-diacylglycerol 3-D-glucosyltransferase; UDP-glucose:1,2-diacyl-sn-glycerol 3-D-glucosyltransferase; 1,2-diacylglycerol 3-glucosyltransferase (ambiguous)
Systematic name: UDP-α-D-glucose:1,2-diacyl-sn-glycerol 3-α-D-glucosyltransferase
Comments: The enzyme from the bacterium Acholeplasma laidlawii, which lacks a cell wall, produces the major non-bilayer lipid in the organism. The enzyme from the bacterium Agrobacterium tumefaciens acts under phosphate deprivation, generating glycolipids as surrogates for phospholipids. The enzyme belongs to the GT4 family of configuration-retaining glycosyltransferases. Many diacylglycerols with long-chain acyl groups can act as acceptors. cf. EC 2.4.1.336, monoglucosyldiacylglycerol synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Karlsson, O.P., Dahlqvist, A., Vikstrom, S. and Wieslander, A. Lipid dependence and basic kinetics of the purified 1,2-diacylglycerol 3-glucosyltransferase from membranes of Acholeplasma laidlawii. J. Biol. Chem. 272 (1997) 929–936. [DOI] [PMID: 8995384]
2.  Li, L., Storm, P., Karlsson, O.P., Berg, S. and Wieslander, A. Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Biochemistry 42 (2003) 9677–9686. [DOI] [PMID: 12911309]
3.  Berg, S., Edman, M., Li, L., Wikstrom, M. and Wieslander, A. Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J. Biol. Chem. 276 (2001) 22056–22063. [DOI] [PMID: 11294844]
4.  Semeniuk, A., Sohlenkamp, C., Duda, K. and Holzl, G. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J. Biol. Chem. 289 (2014) 10104–10114. [DOI] [PMID: 24558041]
[EC 2.4.1.337 created 2015]
 
 
EC 2.5.1.31     Relevance: 51.4%
Accepted name: ditrans,polycis-undecaprenyl-diphosphate synthase [(2E,6E)-farnesyl-diphosphate specific]
Reaction: (2E,6E)-farnesyl diphosphate + 8 isopentenyl diphosphate = 8 diphosphate + ditrans,octacis-undecaprenyl diphosphate
For diagram of di- and tritrans,polycis-polyprenol biosynthesis, click here
Other name(s): di-trans,poly-cis-undecaprenyl-diphosphate synthase; undecaprenyl-diphosphate synthase; bactoprenyl-diphosphate synthase; UPP synthetase; undecaprenyl diphosphate synthetase; undecaprenyl pyrophosphate synthetase; di-trans,poly-cis-decaprenylcistransferase
Systematic name: (2E,6E)-farnesyl-diphosphate:isopentenyl-diphosphate cistransferase (adding 8 isopentenyl units)
Comments: Undecaprenyl pyrophosphate synthase catalyses the consecutive condensation reactions of a farnesyl diphosphate with eight isopentenyl diphosphates, in which new cis-double bonds are formed, to generate undecaprenyl diphosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52350-87-5
References:
1.  Muth, J.D. and Allen, C.M. Undecaprenyl pyrophosphate synthetase from Lactobacillus plantarum: a dimeric protein. Arch. Biochem. Biophys. 230 (1984) 49–60. [DOI] [PMID: 6712246]
2.  Takahashi, I. and Ogura, K. Prenyltransferases of Bacillus subtilis: undecaprenyl pyrophosphate synthetase and geranylgeranyl pyrophosphate synthetase. J. Biochem. (Tokyo) 92 (1982) 1527–1537. [PMID: 6818223]
3.  Guo, R.T., Ko, T.P., Chen, A.P., Kuo, C.J., Wang, A.H. and Liang, P.H. Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J. Biol. Chem. 280 (2005) 20762–20774. [DOI] [PMID: 15788389]
4.  Ko, T.P., Chen, Y.K., Robinson, H., Tsai, P.C., Gao, Y.G., Chen, A.P., Wang, A.H. and Liang, P.H. Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J. Biol. Chem. 276 (2001) 47474–47482. [DOI] [PMID: 11581264]
5.  Fujikura, K., Zhang, Y.W., Fujihashi, M., Miki, K. and Koyama, T. Mutational analysis of allylic substrate binding site of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. Biochemistry 42 (2003) 4035–4041. [DOI] [PMID: 12680756]
6.  Fujihashi, M., Zhang, Y.W., Higuchi, Y., Li, X.Y., Koyama, T. and Miki, K. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl. Acad. Sci. USA 98 (2001) 4337–4342. [DOI] [PMID: 11287651]
7.  Pan, J.J., Chiou, S.T. and Liang, P.H. Product distribution and pre-steady-state kinetic analysis of Escherichia coli undecaprenyl pyrophosphate synthase reaction. Biochemistry 39 (2000) 10936–10942. [DOI] [PMID: 10978182]
8.  Kharel, Y., Zhang, Y.W., Fujihashi, M., Miki, K. and Koyama, T. Significance of highly conserved aromatic residues in Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. J. Biochem. 134 (2003) 819–826. [PMID: 14769870]
[EC 2.5.1.31 created 1984, modified 2011]
 
 
EC 2.7.8.27     Relevance: 49.9%
Accepted name: sphingomyelin synthase
Reaction: a ceramide + a phosphatidylcholine = a sphingomyelin + a 1,2-diacyl-sn-glycerol
For diagram of reaction, click here
Glossary: sphingomyelin = a ceramide-1-phosphocholine
ceramide = an N-acylsphingoid. The fatty acids of naturally occurring ceramides range in chain length from about C16 to about C26 and may contain one or more double bonds and/or hydroxy substituents at C-2
sphingoid = sphinganine, i.e. D-erythro-2-aminooctadecane-1,3-diol, and its homologues and stereoisomers (see also Lip-1.4)
Other name(s): SM synthase; SMS1; SMS2
Systematic name: ceramide:phosphatidylcholine cholinephosphotransferase
Comments: The reaction can occur in both directions [3]. This enzyme occupies a central position in sphingolipid and glycerophospholipid metabolism [4]. Up- and down-regulation of its activity has been linked to mitogenic and pro-apoptotic signalling in a variety of mammalian cell types [4]. Unlike EC 2.7.8.3, ceramide cholinephosphotransferase, CDP-choline cannot replace phosphatidylcholine as the donor of the phosphocholine moiety of sphingomyelin [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 58703-97-2
References:
1.  Ullman, M.D. and Radin, N.S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J. Biol. Chem. 249 (1974) 1506–1512. [PMID: 4817756]
2.  Voelker, D.R. and Kennedy, E.P. Cellular and enzymic synthesis of sphingomyelin. Biochemistry 21 (1982) 2753–2759. [PMID: 7093220]
3.  Huitema, K., van den Dikkenberg, J., Brouwers, J.F. and Holthuis, J.C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23 (2004) 33–44. [DOI] [PMID: 14685263]
4.  Tafesse, F.G., Ternes, P. and Holthuis, J.C. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281 (2006) 29421–29425. [DOI] [PMID: 16905542]
5.  Yamaoka, S., Miyaji, M., Kitano, T., Umehara, H. and Okazaki, T. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J. Biol. Chem. 279 (2004) 18688–18693. [DOI] [PMID: 14976195]
[EC 2.7.8.27 created 2006]
 
 
EC 2.4.1.267     Relevance: 49.5%
Accepted name: dolichyl-P-Glc:Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG6; Dol-P-Glc:Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-glucosyltransferase (configuration-inverting)
Comments: The successive addition of three glucose residues by EC 2.4.1.267, EC 2.4.1.265 (Dol-P-Glc:Glc1Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase) and EC 2.4.1.256 (Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase) represents the final stage of the lipid-linked oligosaccharide assembly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Reiss, G., te Heesen, S., Zimmerman, J., Robbins, P.W. and Aebi, M. Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway. Glycobiology 6 (1996) 493–498. [DOI] [PMID: 8877369]
2.  Runge, K.W., Huffaker, T.C. and Robbins, P.W. Two yeast mutations in glucosylation steps of the asparagine glycosylation pathway. J. Biol. Chem. 259 (1984) 412–417. [PMID: 6423630]
3.  Westphal, V., Xiao, M., Kwok, P.Y. and Freeze, H.H. Identification of a frequent variant in ALG6, the cause of congenital disorder of glycosylation-Ic. Hum. Mutat. 22 (2003) 420–421. [DOI] [PMID: 14517965]
[EC 2.4.1.267 created 2011, modified 2012]
 
 
EC 3.5.4.36     Relevance: 49.5%
Accepted name: mRNA(cytosine6666) deaminase
Reaction: cytosine6666 in apolipoprotein B mRNA + H2O = uracil6666 in apolipoprotein B mRNA + NH3
Other name(s): APOBEC-1 (catalytic component of an RNA-editing complex); APOBEC1 (catalytic subunit); apolipoprotein B mRNA-editing enzyme 1 (catalytic component of an RNA-editing complex); apoB mRNA-editing enzyme catalytic polypeptide 1 (catalytic component of an RNA-editing complex); apoB mRNA editing complex; apolipoprotein B mRNA editing enzyme; REPR
Systematic name: mRNA(cytosine6666) aminohydrolase
Comments: The apolipoprotein B mRNA editing enzyme complex catalyses the editing of apolipoprotein B mRNA at cytidine6666 to uridine, thereby transforming the codon for glutamine-2153 to a termination codon. Editing results in translation of a truncated apolipoprotein B isoform (apoB-48) with distinct functions in lipid transport. The catalytic component (APOBEC-1) contains zinc at the active site [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Chester, A., Weinreb, V., Carter, C.W., Jr. and Navaratnam, N. Optimization of apolipoprotein B mRNA editing by APOBEC1 apoenzyme and the role of its auxiliary factor, ACF. RNA 10 (2004) 1399–1411. [DOI] [PMID: 15273326]
2.  Fujino, T., Navaratnam, N., Jarmuz, A., von Haeseler, A. and Scott, J. C-→U editing of apolipoprotein B mRNA in marsupials: identification and characterisation of APOBEC-1 from the American opossum Monodelphus domestica. Nucleic Acids Res. 27 (1999) 2662–2671. [DOI] [PMID: 10373583]
3.  Barnes, C. and Smith, H.C. Apolipoprotein B mRNA editing in vitro is a zinc-dependent process. Biochem. Biophys. Res. Commun. 197 (1993) 1410–1414. [DOI] [PMID: 8280158]
4.  Chester, A., Somasekaram, A., Tzimina, M., Jarmuz, A., Gisbourne, J., O'Keefe, R., Scott, J. and Navaratnam, N. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22 (2003) 3971–3982. [DOI] [PMID: 12881431]
[EC 3.5.4.36 created 2013]
 
 
EC 2.3.1.261     Relevance: 49.5%
Accepted name: (4-hydroxyphenyl)alkanoate synthase
Reaction: (1) 4-hydroxybenzoyl-[(4-hydroxyphenyl)alkanoate synthase] + 8 malonyl-CoA + 16 NADPH + 16 H+ = 17-(4-hydroxyphenyl)heptadecanoyl-[(4-hydroxyphenyl)alkanoate synthase] + 8 CO2 + 8 CoA + 16 NADP+ + 8 H2O
(2) 4-hydroxybenzoyl-[(4-hydroxyphenyl)alkanoate synthase] + 9 malonyl-CoA + 18 NADPH + 18 H+ + holo-[(4-hydroxyphenyl)alkanoate synthase] = 19-(4-hydroxyphenyl)nonadecanoyl-[(4-hydroxyphenyl)alkanoate synthase] + 9 CO2 + 9 CoA + 18 NADP+ + 9 H2O
Other name(s): msl7 (gene name); Pks15/1
Systematic name: malonyl-CoA:4-hydroxybenzoyl-[(4-hydroxyphenyl)alkanoate synthase] malonyltransferase [(4-hydroxyphenyl)alkanoate-forming]
Comments: The enzyme is part of the biosynthetic pathway of phenolphthiocerol, a lipid that serves as a virulence factor of pathogenic mycobacteria. It catalyses the elongation of 4-hydroxybenzoate that is loaded on its acyl-carrier domain to form (4-hydroxyphenyl)alkanoate intermediates. The enzyme adds either 8 or 9 malonyl-CoA units, resulting in formation of 17-(4-hydroxyphenyl)heptadecanoate or 19-(4-hydroxyphenyl)nonadecanoate, respectively. As the enzyme lacks a thioesterase domain [1], the product remains loaded on the acyl-carrier domain at the end of catalysis, and has to be hydrolysed by an as-yet unknown mechanism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sirakova, T.D., Thirumala, A.K., Dubey, V.S., Sprecher, H. and Kolattukudy, P.E. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J. Biol. Chem. 276 (2001) 16833–16839. [DOI] [PMID: 11278910]
2.  Constant, P., Perez, E., Malaga, W., Laneelle, M.A., Saurel, O., Daffe, M. and Guilhot, C. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 277 (2002) 38148–38158. [DOI] [PMID: 12138124]
3.  Simeone, R., Leger, M., Constant, P., Malaga, W., Marrakchi, H., Daffe, M., Guilhot, C. and Chalut, C. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. FEBS J. 277 (2010) 2715–2725. [DOI] [PMID: 20553505]
[EC 2.3.1.261 created 2017]
 
 
EC 2.4.1.265     Relevance: 48.1%
Accepted name: dolichyl-P-Glc:Glc1Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG8; Dol-P-Glc:Glc1Man9GlcNAc2-PP-Dol α-1,3-glucosyltransferase; dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl-phosphate:α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-glucosyltransferase (configuration-inverting)
Comments: The successive addition of three glucose residues by EC 2.4.1.267 (dolichyl-P-Glc:Man9GlcNAc2-PP-dolichol α-1,3-glucosyltransferase), EC 2.4.1.265 and EC 2.4.1.256 (dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase) represents the final stage of the lipid-linked oligosaccharide assembly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stagljar, I., te Heesen, S. and Aebi, M. New phenotype of mutations deficient in glucosylation of the lipid-linked oligosaccharide: cloning of the ALG8 locus. Proc. Natl. Acad. Sci. USA 91 (1994) 5977–5981. [DOI] [PMID: 8016100]
2.  Runge, K.W. and Robbins, P.W. A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J. Biol. Chem. 261 (1986) 15582–15590. [PMID: 3536907]
3.  Chantret, I., Dancourt, J., Dupre, T., Delenda, C., Bucher, S., Vuillaumier-Barrot, S., Ogier de Baulny, H., Peletan, C., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P. and Moore, S.E. A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl α3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J. Biol. Chem. 278 (2003) 9962–9971. [DOI] [PMID: 12480927]
[EC 2.4.1.265 created 2011, modified 2012]
 
 
EC 3.1.3.36     Relevance: 46.5%
Accepted name: phosphoinositide 5-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 4-phosphate + phosphate
For diagram of 1-phosphatidyl-myo-inositol metabolism, click here
Glossary: 1-phosphatidyl-1D-myo-inositol 4-phosphate = PtdIns4P
1-phosphatidyl-1D-myo-inositol 1,4-bisphosphate = PtdIns(1,4)P2
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate = PtdIns(4,5)P2
1-phosphatidyl-1D-myo-inositol 1,3,4-trisphosphate = PtdIns(1,3,4)P3
1-phosphatidyl-1D-myo-inositol 1,4,5-trisphosphate = PtdIns(1,4,5)P3
1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate = PtdIns(3,4,5)P3
1-phosphatidyl-1D-myo-inositol 1,3,4,5-tetrakisphosphate = PtdIns(1,3,4,5)P4
Other name(s): type II inositol polyphosphate 5-phosphatase; triphosphoinositide phosphatase; IP3 phosphatase; PtdIns(4,5)P2 phosphatase; triphosphoinositide phosphomonoesterase; diphosphoinositide phosphatase; inositol 1,4,5-triphosphate 5-phosphomonoesterase; inositol triphosphate 5-phosphomonoesterase; phosphatidylinositol-bisphosphatase; phosphatidyl-myo-inositol-4,5-bisphosphate phosphatase; phosphatidylinositol 4,5-bisphosphate phosphatase; polyphosphoinositol lipid 5-phosphatase; phosphatidyl-inositol-bisphosphate phosphatase
Systematic name: phosphatidyl-myo-inositol-4,5-bisphosphate 4-phosphohydrolase
Comments: These enzymes can also remove the 5-phosphate from Ins(1,4,5)P3 and/or Ins(1,3,4,5)P4. They are a diverse family of enzymes, with differing abilities to catalyse two or more of the four reactions listed. They are thought to use inositol lipids rather than inositol phosphates as substrates in vivo. All of them can use either or both of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 as substrates; this is the main property that distinguishes them from EC 3.1.3.56, inositol-polyphosphate 5-phosphatase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9036-01-5
References:
1.  Dawson, R.M.C. and Thompson, W. The triphosphoinositide phosphomonoesterase of brain tissue. Biochem. J. 91 (1964) 244–250. [PMID: 4284485]
2.  Roach, P.D. and Palmer, F.B.S. Human erythrocyte cytosol phosphatidyl-inositol-bisphosphate phosphatase. Biochim. Biophys. Acta 661 (1981) 323–333. [DOI] [PMID: 6271223]
3.  Woscholski, R. and Parker, P.J. Inositol phosphatases: constructive destruction of phosphoinositides and inositol phosphates. In: Cockcroft, S. (Ed.), Biology of Phosphoinositides, Biology of Phosphoinositides, Oxford, 2000, pp. 320–338.
[EC 3.1.3.36 created 1972, modified 2002]
 
 
EC 2.3.1.305     Relevance: 45.8%
Accepted name: acyl-[acyl-carrier protein]—UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose N-acyltransferase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose = an [acyl-carrier protein] + a UDP-2-acetamido-2,3-dideoxy-3-{[(3R)-3-hydroxyacyl]amino}-α-D-glucopyranose
Other name(s): lpxA (gene name) (ambiguous)
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier-protein]:UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose 3-N-[(3R)-hydroxyacyl]transferase
Comments: The enzyme is found in bacterial species whose lipid A contains 2,3-diamino-2,3-dideoxy-D-glucopyranose. Some enzymes, such as that from Leptospira interrogans, are highly specific for 2,3-diamino-2,3-dideoxy-D-glucopyranose, while others, such as the enzyme from Acidithiobacillus ferrooxidans, are also able to accept UDP-N-acetyl-α-D-glucosamine (cf. EC 2.3.1.129, acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase). The enzymes from different organisms also differ in their specificity for the acyl donor. The enzyme from Leptospira interrogans is highly specific for (3R)-3-hydroxydodecanoyl-[acp], while that from Mesorhizobium loti functions almost equally well with 10-, 12-, and 14-carbon 3-hydroxyacyl-[acp]s.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sweet, C.R., Williams, A.H., Karbarz, M.J., Werts, C., Kalb, S.R., Cotter, R.J. and Raetz, C.R. Enzymatic synthesis of lipid A molecules with four amide-linked acyl chains. LpxA acyltransferases selective for an analog of UDP-N-acetylglucosamine in which an amine replaces the 3"-hydroxyl group. J. Biol. Chem. 279 (2004) 25411–25419. [DOI] [PMID: 15044493]
2.  Robins, L.I., Williams, A.H. and Raetz, C.R. Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 48 (2009) 6191–6201. [DOI] [PMID: 19456129]
[EC 2.3.1.305 created 2021]
 
 
EC 2.4.1.260     Relevance: 45.6%
Accepted name: dolichyl-P-Man:Man7GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-α-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG12; ALG12 mannosyltransferase; ALG12 α1,6mannosyltransferase; dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase; dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl α6-mannosyltransferase; EBS4; Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,6-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→6)]-β-D-Man-β-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [DOI] [PMID: 15987956]
2.  Hong, Z., Jin, H., Fitchette, A.C., Xia, Y., Monk, A.M., Faye, L. and Li, J. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21 (2009) 3792–3802. [DOI] [PMID: 20023196]
3.  Cipollo, J.F. and Trimble, R.B. The Saccharomyces cerevisiae alg12δ mutant reveals a role for the middle-arm α1,2Man- and upper-arm α1,2Manα1,6Man- residues of Glc3Man9GlcNAc2-PP-Dol in regulating glycoprotein glycan processing in the endoplasmic reticulum and Golgi apparatus. Glycobiology 12 (2002) 749–762. [PMID: 12460943]
4.  Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M. and Hennet, T. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11 (2002) 2331–2339. [DOI] [PMID: 12217961]
[EC 2.4.1.260 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.160, modified 2012]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald